
Cheetah SPI Host Adapter

Features

• SPI Master

• Full Duplex SPI at 40 MHz

• Unsupported Overclocking up to 50 MHz

• All Modes Supported

• High-Speed USB Device (480 Mbps transfer to host PC)

• Actual Host Data Throughput Nearly 100% of SPI Clock Rate

• Windows, Linux and Mac OS X compatible

• Low cost

Summary
The CheetahTM SPI Host Adapter is a high-speed SPI shifter that is capable of
communicating over an SPI serial bus at up to 50 MHz.

Cheetah SPI
Host Adapter

Data Sheet v3.00
July 18, 2008

www.totalphase.com © 2006–2008 Total Phase, Inc.

http://www.totalphase.com/

Cheetah SPI Host Adapter

1 General Overview

1.1 SPI Background

SPI History

SPI is a serial communication bus developed by Motorola. It is a full-duplex protocol which
functions on a master-slave paradigm that is ideally suited to data streaming applications.

SPI Theory of Operation

SPI requires four signals: clock (SCLK), master output/slave input (MOSI), master input/slave
output (MISO), slave select (SS).

Slave 1

SCLK

MOSI

MISO

SS

Master
SCLK

MOSI

MISO

SS1

SS2

SS3 Slave 2

SCLK

MOSI

MISO

SS

Slave 3

SCLK

MOSI

MISO

SS

Figure 1: Sample SPI Implementation.
Each slave device requires a separate slave select signal (SS). This means that as devices are added,
the circuit increases in complexity.

Three signals are shared by all devices on the SPI bus: SCLK, MOSI and MISO. SCLK is
generated by the master device and is used for synchronization. MOSI and MISO are the data
lines. The direction of transfer is indicated by their names. Data is always transferred in both
directions in SPI, but an SPI device interested in only transmitting data can choose to ignore
the receive bytes. Likewise, a device only interested in the incoming bytes can transmit dummy
bytes.

Each device has its own SS line. The master pulls low on a slave’s SS line to select a device
for communication.

The exchange itself has no pre-defined protocol. This makes it ideal for data-streaming appli-
cations. Data can be transferred at high speed, often into the range of the tens of megahertz.

www.totalphase.com 2

http://www.totalphase.com/

Cheetah SPI Host Adapter

The flipside is that there is no acknowledgment, no flow control, and the master may not even
be aware of the slave’s presence.

SPI Modes

Although there is no protocol, the master and slave need to agree about the data frame for the
exchange. The data frame is described by two parameters: clock polarity (CPOL) and clock
phase (CPHA). Both parameters have two states which results in four possible combinations.
These combinations are shown in figure 2.

MODE 0

Clock Phase (CPHA)

C
lo

ck
 P

ol
a
ri

ty
 (
C

PO
L)

CPHA = 0

C
P
O

L
=

 0
C

P
O

L
=

 1

CPHA = 1

MODE 2

MODE 1

MODE 3

sample sample

sample sample

Figure 2: SPI Modes
The frame of the data exchange is described by two parameters, the clock polarity (CPOL) and the clock
phase (CPHA). This diagram shows the four possible states for these parameters and the corresponding
mode in SPI.

SPI Benefits and Drawbacks

SPI is a very simple communication protocol. It does not have a specific high-level protocol
which means that there is almost no overhead. Data can be shifted at very high rates in full
duplex. This makes it very simple and efficient in a single master single slave scenario.

Because each slave needs its own SS, the number of traces required is n+3, where n is the
number of SPI devices. This means increased board complexity when the number of slaves is
increased.

SPI References

• Introduction to Serial Peripheral Interface – Embedded.com
• SPI – Serial Peripheral Interface

www.totalphase.com 3

http://www.embedded.com/story/OEG20020124S0116
http://www.mct.net/faq/spi.html
http://www.totalphase.com/

Cheetah SPI Host Adapter

2 Hardware Specifications

2.1 Connector Specification

The ribbon cable connector is a standard 0.100” (2.54mm) pitch IDC type connector. This
connector will mate with a standard keyed boxed header.

Alternatively, a split cable is available which connects to the ribbon cable and provides individual
leads for each pin.

Orientation

The ribbon cable pin order follows the standard convention. The red line indicates the first
position. When looking at your Cheetah adapter in the upright position (Figure 3), pin 1 is in the
top left corner and pin 10 is in the bottom right corner.

Figure 3: The Cheetah SPI Host Adapter in the upright position.
Pin 1 is located in the upper left corner of the connector and Pin 10 is located in the lower right corner of
the connector.

If you flip your Cheetah adapter over (Figure 4) such that the text on the serial number label is
in the proper upright position, the pin order is as shown in the following diagram.

Figure 4: The Cheetah SPI Host Adapter in the upside down position.
Pin 1 is located in the lower left corner of the connector and Pin 10 is located in the upper right corner of
the connector.

Order of Leads

1. SS2
2. GND
3. SS3
4. NC/+5V
5. MISO
6. NC/+5V

www.totalphase.com 4

http://www.totalphase.com/

Cheetah SPI Host Adapter

7. SCLK
8. MOSI
9. SS1

10. GND

Ground

GND (Pin 2):
GND (Pin 10):

It is imperative that the Cheetah adapter’s ground lead is connected to the ground of the target
system. Without a common ground between the two, the signaling will be unpredictable and
communication will likely be corrupted. Two ground pins are provided to ensure a secure ground
path.

SPI Pins

SCLK (Pin 7):

Serial Clock – control line that is driven by the master and regulates the flow of the data bits.

MOSI (Pin 8):

Master Out Slave In – this data line supplies output data from the master which is shifted into
the slave.

MISO (Pin 5):

Master In Slave Out – this data line supplies the output data from the slave to the input of the
master.

SS1 (Pin 9):

Primary Slave Select – the primary control line that allows slaves to be turned on and off via
hardware control. (This SS is in the same location as the SS line of the Aardvark and Beagle
products.)

SS2 (Pin 1):

Second Slave Select – an additional control line that allows slaves to be turned on and off via
hardware control.

SS2 (Pin 3):

Third Slave Select – an additional control line that allows slaves to be turned on and off via
hardware control.

Powering Downstream Devices

It is possible to power a downstream target, such as an SPI EEPROM with the Cheetah
adapter’s power (which is provided by the USB bus). It is ideal if the downstream device does
not consume more than 20–30 mA. The Cheetah adapter is compatible with USB hubs as well
as USB host controllers. Bus-powered USB hubs are technically only rated to provide 100 mA

www.totalphase.com 5

http://www.totalphase.com/

Cheetah SPI Host Adapter

per USB device. If the Cheetah adapter is directly plugged into a USB host controller or a self-
powered USB hub, it can theoretically draw up to 500 mA total, leaving approximately 375 mA
for any downstream target. However, the Cheetah adapter always reports itself to the host as a
low-power device. Therefore, drawing large amounts of current from the host is not advisable.

2.2 Signal Specifications / Power Consumption

Logic High Levels

All signal levels should be nominally 3.3 volts (+/- 10%) logic high. This allows the Cheetah
adapter to be used with both TTL (5 volt) and CMOS logic level (3.3 volt) devices. A logic
high of 3.3 volts will be adequate for TTL-compliant devices since such devices are ordinarily
specified to accept logic high inputs above approximately 3 volts.

ESD protection

The Cheetah adapter has built-in electrostatic discharge protection to prevent damage to the
unit from high voltage static electricity. This adds a small amount of parasitic capacitance
(approximately 15 pF) to the SPI bus.

Power Consumption

The Cheetah adapter consumes approximately 125 mA of power from the host PC. However, it
reports itself to the host PC as a low-power device. This reporting allows the Cheetah adapter
to be used when its host port is connected to a bus-powered hub which are only technically
specified to supply 100 mA per port. Normally this extra amount of power consumption should
not cause any serious problems since other ports on the hub are most likely not using their
own 100 mA budget. If there are any concerns regarding the total amount of available current
supply, it is advisable to plug the Cheetah adapter’s directly into the host PC’s USB host port or
to use a self-powered hub.

2.3 USB 2.0

The Cheetah adapter is a High-Speed USB 2.0 device. It can be plugged into either a high-
speed or full-speed port. However, a high-speed port must be used to achieve full throughput
at high data rates (SPI clock rates >3 Mbps).

2.4 Temperature Specifications

The Cheetah adapter is designed to be operated at room temperature (10–35°C). The electronic
components are rated for standard commercial specifications (0–70°C). However, the plastic
housing, along with the ribbon and USB cables, may not withstand the higher end of this range.
Any use of the Beagle device outside the room temperature specification will void the hardware
warranty.

www.totalphase.com 6

http://www.totalphase.com/

Cheetah SPI Host Adapter

2.5 SPI Signaling Characteristics

SPI Waveforms

The SPI signaling is characterized by the waveforms in Figures 5 and 6.

SS

SCLK

MISO

MOSI

tcsdtsacte tclk

toh
top

tis tih

B7

B7

B6

B6 B0

B0 X

Figure 5: SPI Timing Requirements

SS

DATA

tcsdtsac

BYTE0 BYTE1 BYTE2

tudtud

Figure 6: SPI Byte-Level Timing

Table 1: SPI Timing Parameters

Symbol Parameter Min Max Units
tclk Clock period 25 10000 ns
te Output Enable to SS control delay 8 8 tclk

tsac SS# assertion to first clock edge 6.5 7 tclk

tcsd SS# deassertion from last clock edge 1.5 2 tclk

top MOSI propagation time 0 5.8 ns
toh MOSI hold time 0.5 0.5 tclk

tis MISO setup time 4.8 N/A ns
tih MISO hold time 0 N/A ns
tud User Insertable Delay 8 232 tclk

www.totalphase.com 7

http://www.totalphase.com/

Cheetah SPI Host Adapter

Notes:

1. The above timings only correspond to actions performed within a given SPI transaction.
Actions that span transactions will be subject to inter-transaction USB delays. However,
many SPI packets (delineated by SS assert/deassert) can be sent within a single trans-
action.

2. User insertable delays are quantized in blocks of 8 clock cycles.

3. A user delay can be inserted to stretch te, tsac or, tcsd as needed.

4. There is normally no gap between data bytes, although a user delay can be inserted
between bytes if the target SPI slave device needs time to process each received byte.

5. The MOSI hold time (toh) can be longer than half of one clock period, depending on the
exact MOSI propagation time. However, the maximum guaranteed hold time is 0.5*tclk.

6. The parameters tsac and tcsd differ based on mode and polarity. For example, tsac = 6.5
and tcsd = 2.0 clock periods for modes 0 and 2. Likewise, tsac = 7.0 and tcsd = 1.5 clock
periods for modes 1 and 3.

Speeds

The Cheetah device has a flexible clock generator that can produce SPI clock rates at a very
fine granularity. The minimum bit rate is 100 kHz and the maximum settable bit rate is 50 MHz.
Many intermediate bit rates are available, often with a 1–2 kHz precision.

The Cheetah software and hardware have been meticulously designed to ensure maximal av-
erage throughput over the USB bus. In other words, if the SPI clock rate is set to 30 MHz, the
average data rate across an entire transaction will be nearly 30 Mbps, end-to-end from host PC
to SPI target device. This property holds even for very large transactions ranging from hundreds
of kilobytes to many megabytes long. This high throughput feature is only possible within a sin-
gle transaction. Multiple transactions will suffer unavoidable USB bus latencies. Hence, the
best throughput can be achieved for single transactions that transfer a large number of bytes at
a time.

Rarely, there can be delays across the USB bus even within a transaction. While there will be
a delay in the outgoing SCLK while the Cheetah adapter is paused, waiting for more data to
shift out, the average throughput will not be diminished appreciably since such events happen
so infrequently.

Pin Driving

The Cheetah adapter can be connected or disconnected from the bus through software control.
Namely, the device can either drive its outputs or place them in high impedance mode. When
in high impedance mode the Cheetah device will hold the last value of the output lines with
very weak pull-up or pull-down resistances. When connected to the bus, the Cheetah adapter
persistently holds the state of the SS lines across different shift transactions. Hence, if the SS
line is left asserted after one transaction, it will stay asserted until modified in a subsequent
transaction.

www.totalphase.com 8

http://www.totalphase.com/

Cheetah SPI Host Adapter

3 Software

3.1 Compatibility

Overview

The Cheetah software is offered as a 32-bit Dynamic Linked Library (or shared object) and is
compatible with 64-bit operating systems. The specific compatibility for each operating system
is discussed below. Be sure the device driver has been installed before plugging in the Cheetah
adapter.

Windows Compatibility

The Cheetah software is compatible with Windows 2000 (SP4 or later), Windows XP (SP2 or
later, 32-bit only), and Windows Vista (32-bit and 64-bit). Legacy 16-bit Windows 95/98/ME
operating systems are not supported.

Linux Compatibility

The Cheetah software is compatible with all standard 32-bit and 64-bit distributions of Linux
with integrated USB support. Kernel 2.6 is required and the appropriate 32-bit system libraries
are also required.

Mac OS X Compatibility

The Cheetah software is compatible with Intel versions of Mac OS X 10.4 Tiger and 10.5 Leop-
ard. Installation of the latest available update is recommended.

3.2 Windows USB Driver

Driver Installation

To install the appropriate USB communication driver under Windows, use the Total Phase USB
Driver Installer before plugging in any device. The driver installer can be found either on the
CD-ROM (use the HTML based guide that is opened when the CD is first loaded to locate the
Windows installer), or in the Downloads section of the Cheetah adapter product page on the
Total Phase website. Note that the drivers used for Windows 2000 are different from the drivers
used for Windows XP and greater. The driver installer will install the appropriate drivers for the
system.

After the driver has been installed, plugging in a Cheetah adapter for the first time will cause
the adapter to be installed and associated with the correct driver. The following steps describe
the feedback the user should receive from Windows after a Cheetah adapter is plugged into a
system for the first time:

Windows 2000:

1. The Found New Hardware dialog window will appear during installation and will disappear
when the installation completes.

www.totalphase.com 9

http://www.totalphase.com/

Cheetah SPI Host Adapter

Windows XP:

1. The Found New Hardware notification bubble will pop up from the system tray and state
that the “Total Phase Cheetah Host Adapter” has been detected. Note that installation
may take a while (30-60 seconds per device).

2. When the installation is complete, the Found New Hardware notification bubble will again
pop up and state that “your new hardware is installed and ready to use.”

Windows Vista:

1. A notification bubble will pop up from the system tray and state that Windows is “installing
device driver software.”

2. When the installation is complete, the notification bubble will again pop up and state that
the “device driver software installed successfully.”

To confirm that the device was correctly installed, check that the device appears in the “Device
Manager.” To navigate to the “Device Manager” screen, select “Control Panel | System Prop-
erties | Hardware | Device Manager” for Windows 2000/XP or select “Control Panel | Hardware
and Sound | Device Manager” for Windows Vista. The Cheetah adapter should appear un-
der the “LibUSB-Win32 Devices” section for Windows 2000 or under the “Universal Serial Bus
Controllers” section for Windows XP/Vista.

Driver Removal

The USB communication driver can be removed from the operating system by using the Win-
dows program removal utility. Instructions for using this utility can be found below. Alternatively,
the Uninstall option found in the driver installer can also be used to remove the driver from the
system. It is critical that all Total Phase devices have been removed from your system before
removing the USB drivers.

Windows 2000/XP:

1. Select “Control Panel | Add or Remove Programs”

2. Select “Total Phase USB Driver” and select “Change/Remove”

3. Follow the instructions in the uninstaller

Windows Vista:

1. Select “Control Panel | Uninstall a program”

2. Right click on “Total Phase USB Driver” and select “Uninstall/Change”

3. Follow the instructions in the uninstaller

www.totalphase.com 10

http://www.totalphase.com/

Cheetah SPI Host Adapter

3.3 Linux USB Driver

The Cheetah communications layer under Linux does not require a specific kernel driver to
operate. However, the user must ensure independently that the libusb library is installed on the
system since the Cheetah library is dynamically linked to libusb.

Most modern Linux distributions use the udev subsystem to help manipulate the permissions
of various system devices. This is the preferred way to support access to the Cheetah adapter
such that the device is accessible by all of the users on the system upon device plug-in.

For legacy systems, there are two different ways to access the Cheetah adapter, through
USB hotplug or by mounting the entire USB filesystem as world writable. Both require that
/proc/bus/usb is mounted on the system which is the case on most standard distributions.

UDEV

Support for udev requires a single configuration file that is available on the software CD, and also
listed on the Total Phase website for download. This file is 99-totalphase.rules. Please
follow the following steps to enable the appropriate permissions for the Cheetah adapter.

1. As superuser, unpack 99-totalphase.rules to /etc/udev/rules.d

2. chmod 644 /etc/udev/rules.d/99-totalphase.rules

3. Unplug and replug your Cheetah adapter(s)

USB Hotplug

USB hotplug requires two configuration files which are available on the software CD, and
also listed on the Total Phase website for download. These files are: cheetah and
cheetah.usermap. Please follow the following steps to enable hotplugging.

1. As superuser, unpack cheetah and cheetah.usermap to /etc/hotplug/usb

2. chmod 755 /etc/hotplug/usb/cheetah

3. chmod 644 /etc/hotplug/usb/cheetah.usermap

4. Unplug and replug your Cheetah adapter(s)

5. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

World-Writable USB Filesystem

Finally, here is a last-ditch method for configuring your Linux system in the event that your
distribution does not have udev or hotplug capabilities. The following procedure is not necessary
if you were able to exercise the steps in the previous subsections.

Often, the /proc/bus/usb directory is mounted with read-write permissions for root and read-
only permissions for all other users. If an non-privileged user wishes to use the Cheetah adapter

www.totalphase.com 11

http://www.totalphase.com/

Cheetah SPI Host Adapter

and software, one must ensure that /proc/bus/usb is mounted with read-write permissions
for all users. The following steps can help setup the correct permissions. Please note that these
steps will make the entire USB filesystem world writable.

1. Check the current permissions by executing the following command:
“ls -al /proc/bus/usb/001”

2. If the contents of that directory are only writable by root, proceed with the remaining steps
outlined below.

3. Add the following line to the /etc/fstab file:

none /proc/bus/usb usbfs defaults,devmode=0666 0 0

4. Unmount the /proc/bus/usb directory using “umount”

5. Remount the /proc/bus/usb directory using “mount”

6. Repeat step 1. Now the contents of that directory should be writable by all users.

7. Set the environment variable USB_DEVFS_PATH to /proc/bus/usb

3.4 Mac OS X USB Driver

The Cheetah communications layer under Mac OS X does not require a specific kernel driver to
operate. Both Mac OS X 10.4 Tiger and 10.5 Leopard are supported. It is typically necessary
to ensure that the user running the software is currently logged into the desktop. No further
user configuration should be necessary.

3.5 USB Port Assignment

The Cheetah adapter is assigned a port on a sequential basis. The first adapter is assigned
to port 0, the second is assigned to port 1, and so on. If a Cheetah adapter is subsequently
removed from the system, the remaining adapters shift their port numbers accordingly. Hence
with n Cheetah adapters attached, the allocated ports will be numbered from 0 to n−1.

Detecting Ports

As described in following API documentation chapter, the ch_find_devices routine can be
used to determine the mapping between the physical Cheetah adapter and their port numbers.

3.6 Cheetah Dynamically Linked Library

DLL Philosophy

The Cheetah DLL provides a robust approach to allow present-day Cheetah-enabled applica-
tions to interoperate with future versions of the device interface software without recompilation.
For example, take the case of a graphical application that is written to communicate SPI through
a Cheetah device. At the time the program is built, the Cheetah software is released as version

www.totalphase.com 12

http://www.totalphase.com/

Cheetah SPI Host Adapter

1.2. The Cheetah interface software may be improved many months later resulting in increased
performance and/or reliability; it is now released as version 1.3. The original application need
not be altered or recompiled. The user can simply replace the old Cheetah DLL with the newer
one. How does this work? The application contains only a stub which in turn dynamically loads
the DLL on the first invocation of any Cheetah API function. If the DLL is replaced, the applica-
tion simply loads the new one, thereby utilizing all of the improvements present in the replaced
DLL.

On Linux, the DLL is technically known as a shared object (SO).

DLL Location

Total Phase provides language bindings that can be integrated into any custom application. The
default behavior of locating the Cheetah DLL is dependent on the operating system platform
and specific programming language environment. For example, for a C or C++ application, the
following rules apply:

On a Windows system, this is as follows:

1. The directory from which the application binary was loaded.

2. The application’s current directory.

3. 32-bit system directory. Examples:

• c:\Windows\System32 [Windows 2000/XP/Vista 32-bit]

• c:\Windows\SysWow64 [Windows Vista 64-bit]

4. The windows directory. (Ex: c:\Windows)

5. The directories listed in the PATH environment variable.

On a Linux system this is as follows:

1. First, search for the shared object in the application binary path. If the /proc filesystem
is not present, this step is skipped.

2. Next, search in the application’s current working directory.

3. Search the paths explicitly specified in LD_LIBRARY_PATH.

4. Finally, check any system library paths as specified in /etc/ld.so.conf and cached in
/etc/ld.so.cache.

On a Mac OS X system this is as follows:

1. First, search for the shared object in the application binary path.

2. Next, search in the application’s current working directory.

www.totalphase.com 13

http://www.totalphase.com/

Cheetah SPI Host Adapter

3. Search the paths explicitly specified in DYLD_LIBRARY_PATH.

4. Finally, check the /usr/lib and /usr/local/lib system library paths.

If the DLL is still not found, the CH_UNABLE_TO_LOAD_LIBRARY error will be returned by the
binding function.

DLL Versioning

The Cheetah DLL checks to ensure that the firmware of a given Cheetah device is compatible.
Each DLL revision is tagged as being compatible with firmware revisions greater than or equal
to a certain version number. Likewise, each firmware version is tagged as being compatible
with DLL revisions greater than or equal to a specific version number.

Here is an example.

DLL v1.20: compatible with Firmware >= v1.15
Firmware v1.30: compatible with DLL >= v1.20

Hence, the DLL is not compatible with any firmware less than version 1.15 and the firmware
is not compatible with any DLL less than version 1.20. In this example, the version number
constraints are satisfied and the DLL can safely connect to the target firmware without error. If
there is a version mismatch, the API calls to open the device will fail. See the API documentation
for further details.

3.7 Rosetta Language Bindings: API Integration into Custom Applications

Overview

The Cheetah Rosetta language bindings make integration of the Cheetah API into custom ap-
plications simple. Accessing Cheetah functionality simply requires function calls to the Cheetah
API. This API is easy to understand, much like the ANSI C library functions, (e.g., there is no
unnecessary entanglement with the Windows messaging subsystem like development kits for
some other embedded tools).

First, choose the Rosetta bindings appropriate for the programming language. Different Rosetta
bindings are included with the software distribution on the distribution CD. They can also be
found in the software download package available on the Total Phase website. Currently the
following languages are supported: C/C++, Python, Visual Basic 6, Visual Basic .NET, and C#.
Next, follow the instructions for each language binding on how to integrate the bindings with
your application build setup. As an example, the integration for the C language bindings is
described below. (For information on how to integrate the bindings for other languages, please
see the example code included on the distribution CD and also available for download on the
Total Phase website.)

1. Include the cheetah.h file included with the API software package in any C or C++
source module. The module may now use any Cheetah API call listed in cheetah.h.

www.totalphase.com 14

http://www.totalphase.com/

Cheetah SPI Host Adapter

2. Compile and link cheetah.c with your application. Ensure that the include path for
compilation also lists the directory in which cheetah.h is located if the two files are not
placed in the same directory.

3. Place the Cheetah DLL, included with the API software package, in the same directory
as the application executable or in another directory such that it will be found by the
previously described search rules.

Versioning

Since a new Cheetah DLL can be made available to an already compiled application, it is essen-
tial to ensure the compatibility of the Rosetta binding used by the application (e.g., cheetah.c)
against the DLL loaded by the system. A system similar to the one employed for the DLL-
Firmware cross-validation is used for the binding and DLL compatibility check.

Here is an example.

DLL v1.20: compatible with Binding >= v1.10
Binding v1.15: compatible with DLL >= v1.15

The above situation will pass the appropriate version checks. The compatibility check is per-
formed within the binding. If there is a version mismatch, the API function will return an error
code, CH_INCOMPATIBLE_LIBRARY.

Customizations

While the provided language bindings stubs are fully functional, it is possible to modify the code
found within this file according to specific requirements imposed by the application designer.

For example, in the C bindings one can modify the DLL search and loading behavior to conform
to a specific paradigm. See the comments in cheetah.c for more details.

3.8 Application Notes

Threading

The Cheetah DLL is designed for single-threaded environments so as to allow for maximum
cross-platform compatibility. If the application design requires multi-threaded use of the Chee-
tah functionality, each Cheetah API call can be wrapped with a thread-safe locking mechanism
before and after invocation.

It is the responsibility of the application programmer to ensure that the Cheetah open and close
operations are thread-safe and cannot happen concurrently with any other Cheetah operations.
However, once a Cheetah device is opened, all operations to that device can be dispatched to
a separate thread as long as no other threads access that same Cheetah device.

www.totalphase.com 15

http://www.totalphase.com/

Cheetah SPI Host Adapter

USB Scheduling Delays

More specifically, each API call that is used to send data to and from the Cheetah adapter
can incur up to 125 µs (1 ms) in delay on the PC host for USB High Speed (Full Speed)
connections. This is caused by the inherent design of the USB architecture. The operating
system will queue any outgoing USB transfer request on the host until the next USB frame
period. The frame period is 125 µs (1 ms). Thus, if the application attempts to execute several
transactions in rapid sequence there can be 1–2 ms delay between each transaction plus any
additional process scheduling delays introduced by the operating system. The best throughput
can be achieved for single transactions that transfer a large number of bytes at a time.

www.totalphase.com 16

http://www.totalphase.com/

Cheetah SPI Host Adapter

4 Firmware

4.1 Philosophy

The firmware included with the Cheetah adapter provides for the analysis of the supported
protocols. It is installed at the factory during manufacturing. Updates to this firmware are
provided through a device upgrade utility. The Cheetah software automatically detects firmware
compatibility and will inform the user if an upgrade is required.

4.2 Procedure

Firmware upgrades should be conducted using the procedure specified in the README.txt that
accompanies the particular firmware revision.

www.totalphase.com 17

http://www.totalphase.com/

Cheetah SPI Host Adapter

5 API Documentation

5.1 Introduction

The API documentation describes the Cheetah Rosetta C bindings.

5.2 General Data Types

The following definitions are provided for convenience.

typedef unsigned char u08;
typedef unsigned short u16;
typedef unsigned int u32;
typedef unsigned long long u64;
typedef signed char s08;
typedef signed short s16;
typedef signed int s32;
typedef signed long long s64;

5.3 Notes on Status Codes

Most of the Cheetah API functions return a status or error code back to the caller. The complete
list of status codes is provided at the end of this chapter. All of the error codes are assigned
values less than 0, separating these responses from any numerical values returned by certain
API functions.

Each API function can return one of two error codes with respect to the loading of the Chee-
tah DLL, CH_UNABLE_TO_LOAD_LIBRARY and CH_INCOMPATIBLE_LIBRARY. If these status
codes are received, refer to the previous sections in this datasheet that discuss the DLL and
API integration of the Cheetah software. Furthermore, all API calls can potentially return the
errors CH_UNABLE_TO_LOAD_DRIVER or CH_INCOMPATIBLE_DRIVER. If either of these errors
are seen, please make sure the driver is installed and of the correct version. Where appropriate,
compare the language binding versions (e.g., CH_HEADER_VERSION found in cheetah.h and
CH_CFILE_VERSION found in cheetah.c) to verify that there are no mismatches. Next, ensure
that the Rosetta language binding (e.g., cheetah.c and cheetah.h) are from the same re-
lease as the Cheetah DLL. If all of these versions are synchronized and there are still problems,
please contact Total Phase support for assistance.

Note that any API function that accepts a Cheetah handle can potentially return the error code
CH_INVALID_HANDLE if the handle does not correspond to a valid Cheetah device that has
already been opened. If this error is received, check the application code to ensure that the
ch_open command returned a valid handle and that this handle was not corrupted before being
passed to the offending API function.

Finally, any API call that communicates with a Cheetah device can also return the error
CH_COMMUNICATION_ERROR. This means that while the Cheetah handle is valid and the com-
munication channel is open, there was an error communicating with the device. This is possible
if the device was unplugged while being used.

www.totalphase.com 18

http://www.totalphase.com/

Cheetah SPI Host Adapter

These common status responses are not reiterated for each function. Only the error codes that
are specific to each API function are described below.

All of the possible error codes, along with their values and status strings, are listed following the
API documentation.

www.totalphase.com 19

http://www.totalphase.com/

Cheetah SPI Host Adapter

5.4 General

Interface

Find Devices (cheetah_find_devices)

int ch_find_devices (int nelem,
u16 * devices);

Get a list of ports to which Cheetah devices are attached.

Arguments

nelem: Maximum size of the array

devices: array into which the port numbers are returned

Return Value

This function returns the number of devices found, regardless of the array size.

Specific Error Codes

None.

Details

Each element of the array is written with the port number.

Devices that are in use are OR’ed with CH_PORT_NOT_FREE (0x8000). Under Linux, such de-
vices correspond to Cheetah adapters that are currently in use. Under Windows, such devices
are currently in use, but it is not known if the device is a Cheetah adapter.

Example:

Devices are attached to port 0, 1, 2.
Ports 0 and 2 are available, and port 1 is in-use.
devices = { 0x0000, 0x8001, 0x0002 }

If the input array is NULL, it is not filled with any values.

If there are more devices than the array size (as specified by nelem), only the first nelem port
numbers will be written into the array.

Find Devices (ch_find_devices_ext)

int ch_find_devices_ext (int num_devices,
u16 * devices,
int num_ids,
u32 * unique_ids);

Get a list of ports and unique IDs to which Cheetah devices are attached.

Arguments

num_devices: maximum number of devices to return

devices: array into which the port numbers are returned

num_ids: maximum number of device IDs to return

unique_ids: array into which the unique IDs are returned

www.totalphase.com 20

http://www.totalphase.com/

Cheetah SPI Host Adapter

Return Value

This function returns the number of devices found, regardless of the array size.

Specific Error Codes

None.

Details

This function is the same as ch_find_devices() except that it also returns the unique IDs of
each Cheetah device. The IDs are guaranteed to be non-zero if valid.

The IDs are the unsigned integer representation of the 10-digit serial numbers.

The number of devices and IDs returned in each of their respective arrays is determined by the
minimum of num_devices and num_ids. However, if either array is NULL, the length passed in
for the other array is used as-is, and the NULL array is not populated. If both arrays are NULL,
neither array is populated, but the number of devices found is still returned.

Open a Cheetah device (ch_open)

Cheetah ch_open (int port_number);

Open a connection to the Cheetah at the given port.

Arguments

port_number: The Cheetah port number. This port number is the the same as the one ob-
tained from the ch_find_devices function. It is a zero-based number.

Return Value

This function returns a Cheetah handle, which is guaranteed to be greater than zero if valid.

Specific Error Codes

CH_UNABLE_TO_OPEN: The specified port is not connected to a Cheetah device or the port is
already in use.

CH_INCOMPATIBLE_DEVICE: There is a version mismatch between the DLL and the hardware.
The DLL is not of a sufficient version for interoperability with the hardware version or vice
versa. See ch_open_ext() for more information.

Details

This function is recommended for use in simple applications where extended information is not
required. For more complex applications, the use of ch_open_ext() is recommended.

Open a Cheetah device (ch_open_ext)

Cheetah ch_open_ext (int port_number, CheetahExt *ch_ext);

Open the Cheetah port, returning extended information in the supplied structure.

Arguments

port_number: same as ch_open

ch_ext: pointer to pre-allocated structure for extended version information available on open

Return Value

This function returns a Cheetah handle, which is guaranteed to be greater than zero if valid.

www.totalphase.com 21

http://www.totalphase.com/

Cheetah SPI Host Adapter

Specific Error Codes

CH_UNABLE_TO_OPEN: The specified port is not connected to a Cheetah device or the port is
already in use.

CH_INCOMPATIBLE_DEVICE: There is a version mismatch between the DLL and the hardware.
The DLL is not of a sufficient version for interoperability with the hardware version or vice
versa. The version information will be available in the memory pointed to by ch_ext.

Details

If 0 is passed as the pointer to the structure ch_ext, this function will behave exactly like
ch_open().

The CheetahExt structure is described below:

struct CheetahExt {
CheetahVersion version;
/* Features of this device. */
int features;

}

The CheetahVersion structure describes the various version dependencies of Cheetah com-
ponents. It can be used to determine which component caused an incompatibility error.

struct CheetahVersion {
/* Software and hardware versions. */
u16 software;
u16 hardware;

/*
* Hardware revisions that are compatible with this

* software version. The top 16 bits gives the maximum

* accepted hardware revision. The lower 16 bits gives

* the minimum accepted hardware revision.

*/
u32 hw_revs_for_sw;

/*
* Driver revisions that are compatible with this

* software version. The top 16 bits gives the maximum

* accepted driver revision. The lower 16 bits gives

* the minimum accepted driver revision. This version

* checking is currently only pertinent for WIN32

* platforms.

*/
u32 drv_revs_for_sw;

/*
* Software requires that the API interface must be >= this

* version.

www.totalphase.com 22

http://www.totalphase.com/

Cheetah SPI Host Adapter

*/
u16 api_req_by_sw;

};

All version numbers are of the format:

(major « 8) | minor
example: v1.20 would be encoded as 0x0114.

The structure is zeroed before the open is attempted. It is filled with whatever information
is available. For example, if the hardware version is not filled, then the device could not be
queried for its version number.

This function is recommended for use in complex applications where extended information is
required. For simpler applications, the use of ch_open() is recommended.

Close a Cheetah (ch_close)

int ch_close (Cheetah cheetah);

Close the connection to the given Cheetah.

Arguments

cheetah: handle of a Cheetah adapter to be closed

Return Value

The number of adapters closed is returned on success. This will usually be 1.

Specific Error Codes

None.

Details

If the handle argument is zero, the function will attempt to close all possible handles, thereby
closing all open Cheetah adapters. The total number of Cheetah adapters closed is returned
by the function.

Get Port (ch_port)

int ch_port (Cheetah cheetah);

Return the port number for this Cheetah handle.

Arguments

cheetah: handle of a Cheetah adapter

Return Value

The port number corresponding to the given handle is returned. It is a zero-based number.

Specific Error Codes

None.

Details

None.

www.totalphase.com 23

http://www.totalphase.com/

Cheetah SPI Host Adapter

Get Unique ID (ch_unique_id)

u32 ch_unique_id (Cheetah cheetah);

Return the unique ID of the given Cheetah device.

Arguments

cheetah: handle of a Cheetah adapter

Return Value

This function returns the unique ID for this Cheetah adapter. The IDs are guaranteed to be
non-zero if valid. The ID is the unsigned integer representation of the 10-digit serial number.

Specific Error Codes

None.

Details

None.

Status String (ch_status_string)

const char *ch_status_string (int status);

Return the status string for the given status code.

Arguments

status: status code returned by a Cheetah API function

Return Value

This function returns a human readable string that corresponds to status. If the code is not
valid, it returns a NULL string.

Specific Error Codes

None.

Details

None.

Version (ch_version)

int ch_version (Cheetah cheetah, CheetahVersion *version);

Return the version matrix for the device attached to the given handle.

Arguments

cheetah: handle of a Cheetah adapter

version: pointer to pre-allocated structure

Return Value

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

www.totalphase.com 24

http://www.totalphase.com/

Cheetah SPI Host Adapter

Details
If the handle is 0 or invalid, only the software version is set.

See the details of ch_open_ext for the definition of CheetahVersion.

Sleep (ch_sleep_ms)

u32 ch_sleep_ms (u32 milliseconds);

Sleep for given amount of time.

Arguments
milliseconds: number of milliseconds to sleep

Return Value
This function returns the number of milliseconds slept.

Specific Error Codes

None.

Details
This function provides a convenient cross-platform function to sleep the current thread using
standard operating system functions.

The accuracy of this function depends on the operating system scheduler. This function will
return the number of milliseconds that were actually slept.

Target Power (ch_target_power)

int ch_target_power (Cheetah cheetah, u08 power_mask);

Activate/deactivate target power pins 4 and 6.

Arguments
cheetah: handle of a Cheetah adapter

power_mask: enumerated values specifying power pin state. See Table 2.

Table 2: power_mask enumerated types

CH_TARGET_POWER_OFF Disable target power pins
CH_TARGET_POWER_ON Enable target power pins
CH_TARGET_POWER_QUERY Queries the target power pin state

Return Value
The current state of the target power pins on the Cheetah adapter will be returned. The config-
uration will be described by the same values as in the table above.

Specific Error Codes

None.

Details
Both target power pins are controlled together. Independent control is not supported. This
function may be executed in any operation mode.

www.totalphase.com 25

http://www.totalphase.com/

Cheetah SPI Host Adapter

Host Interface Speed (ch_host_ifce_speed)

int ch_host_ifce_speed (Cheetah cheetah);

Return the interface host speed.

Arguments

cheetah: handle of a Cheetah adapter

Return Value

This function returns enumerated values specifying the USB speed at which the host computer
is communicating with the given Cheetah device. See Table 3.

Table 3: Host interface speed enumerated types

CH_HOST_IFCE_FULL_SPEED Full speed (12Mbps) interface
CH_HOST_IFCE_HIGH_SPEED High Speed (480Mbps) interface

Specific Error Codes

None.

Details

Used to determine the USB communication rate between the Cheetah device and the host. A
High Speed USB interface is highly recommended to take full advantage of the high speed SPI
interface.

www.totalphase.com 26

http://www.totalphase.com/

Cheetah SPI Host Adapter

5.5 SPI Interface

SPI Overview

In order to use the Cheetah API to send SPI data across the bus at high speed, commands are
accumulated in a queue until a call is made to batch shift all of the queued commands. The
sequence of commands in the command queue for a typical SPI transaction is:

1. Call ch_spi_queue_clear to clear the command queue.

2. Call ch_spi_queue_oe to add a command to the queue to enable the Cheetah device’s
outputs on the SPI bus.

3. Call ch_spi_queue_ss to add a command to the queue to enable the slave select signal.

4. Call ch_spi_queue_byte and ch_spi_queue_array to queue data to be sent across
the SPI bus.

5. Call ch_spi_queue_ss to queue a command to disable the slave select signal.

6. Optionally, call ch_spi_queue_oe to queue a command to disable the outputs of the
Cheetah device.

7. Call ch_spi_batch_shift to send the accumulated accumulated commands across
the SPI bus.

Please note that the queue is not cleared after it has been executed. This allows the same
queue to be executed multiple times without re-queuing commands. The only way to clear a
queue is by calling ch_spi_queue_clear.

If the user wishes to repeat the exact same shift sequence on the bus, the last step can be
executed without the preceding ones. Also, the OE enable commands and SS assert/deassert
commands are held persistent on the Cheetah device. For example, if the SS line is left asserted
after one transaction, it will stay asserted until modified in a subsequent transaction.

The data sent from the slave device to the Cheetah device across the MISO line will be filled into
the data_in parameter of the ch_spi_batch_shift function. Also, ch_spi_batch_length
can be called prior to calling ch_spi_batch_shift to find out how large of an array needs to
be allocated for the data_in argument.

The SPI master and slave must both be configured to use the same bit protocol (mode). Prior
to sending any data across the SPI bus, the application should call ch_spi_configure and
ch_spi_bitrate to set the proper configuration for the SPI communication.

This architecture for the Cheetah API allows for maximum flexibility of the control lines (SS1,
SS2, and SS3) and provides for a mechanism to avoid expensive USB scheduling delays (as
described in a previous section of this datasheet). For example, one can send several separate
SPI packets with the following sequence:

1. Assert the OE.

www.totalphase.com 27

http://www.totalphase.com/

Cheetah SPI Host Adapter

2. Assert the appropriate SS, queue the data, and deassert SS.

3. Add optional delay on the bus.

4. Assert the appropriate SS, queue the data, and deassert SS.

5. Repeat the last two steps as many times as desired.

6. Call the batch shift function.

This grouping of packets into a single transactions can be very efficient for programming devices
such as EEPROMs or flash memories that require a separate SPI packets for each page that
needs to be written. The delay step would then correspond to the page write time specified in
the memory’s datasheet.

Note that the ch_spi_batch_shift function will only return to the caller after the entire queue
has been shifted on the SPI bus. There is an alternative, non-blocking implementation that
can be used in lieu of ch_spi_batch_shift. The functions ch_spi_async_submit and
ch_spi_async_collect allow the user to submit a batch queue and perform other tasks (in-
cluding assembling and submitting a subsequent queue) before collecting the results of the
initial SPI shift operation. This is an advanced feature that has traditionally only been needed
by a few users; a detailed description is provided in the relevant API documentation. The error
code CH_SPI_ASYNC_PENDING can be returned by other synchronous functions in the event
that asynchronous batches are pending (i.e., have not been yet collected).

www.totalphase.com 28

http://www.totalphase.com/

Cheetah SPI Host Adapter

SPI Functions

Set Bitrate (ch_spi_bitrate)

int ch_spi_bitrate (Cheetah cheetah, int bitrate_khz);

Set the SPI bitrate in kilohertz.

Arguments

cheetah: handle of a Cheetah adapter

bitrate_khz: the requested bitrate in kHz.

Return Value

This function returns the actual bitrate set.

Specific Error Codes

None.

Details

The power-on default bitrate is 1 MHz.

Only certain discrete bitrates are supported by the Cheetah adapter. As such, this actual bitrate
set will be less than or equal to the requested bitrate unless the requested value is less than
100 kHz, in which case the Cheetah adapter will default to 100 kHz. The maximum supported
speed for the Cheetah adapter is 50 MHz.

If bitrate_khz is 0, the function will set the bit rate to the minimum value, 100 kHz.

Configure SPI Bus Parameters (ch_spi_configure)

int ch_spi_configure (Cheetah cheetah,
CheetahSpiPolarity polarity,
CheetahSpiPhase phase,
CheetahSpiBitorder bitorder,
u08 ss_polarity);

Configure the SPI interface.

Arguments

cheetah: handle of a Cheetah adapter

polarity: the polarity of the clock signal (see Table 4)

phase: the phase of the clock signal to sample on (see Table 5)

bitorder: the bit order, big endian or little endian (see Table 6)

ss_polarity: the polarity of the slave select signals

Table 4: polarity enumerated types

CH_SPI_POL_RISING_FALLING Clock idle low, active high
CH_SPI_POL_FALLING_RISING Clock idle high, active low

Return Value

www.totalphase.com 29

http://www.totalphase.com/

Cheetah SPI Host Adapter

Table 5: phase enumerated types

CH_SPI_PHASE_SAMPLE_SETUP Sample on the leading edge of the clock sig-
nal

CH_SPI_PHASE_SETUP_SAMPLE Sample on the trailing edge of the clock signal

Table 6: bitorder enumerated types

CH_SPI_BITORDER_MSB Big-endian bit order
CH_SPI_BITORDER_LSB Little-endian bit order

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details
These configuration parameters specify how to clock the bits that are sent and received on the
Cheetah SPI interface.

The polarity option specifies which transition constitutes the leading edge and which transi-
tion is the falling edge. For example, CH_SPI_POL_RISING_FALLING would configure the SPI
to idle the SCLK clock line low. The clock would then transition low-to-high on the leading edge
and high-to-low on the trailing edge.

The phase option determines whether to sample or setup on the leading edge of the clock
signal. For example, CH_SPI_PHASE_SAMPLE_SETUP would configure the SPI to sample on
the leading edge and setup on the trailing edge of the clock.

For example, mode 3 in the figure found in the "SPI Background" chapter would correspond to
the pair (CH_SPI_POL_FALLING_RISING, CH_SPI_PHASE_SETUP_SAMPLE).

The bitorder option is used to indicate whether LSB or MSB is shifted first.

The ss_polarity option is a bit mask that indicates whether each SS line is active high or
active low. For example, setting ss_polarity to 0x05 would mean that SS3 and SS1 are
active high and SS2 is active low.

Clear Batch Queue (ch_spi_queue_clear)

int ch_spi_queue_clear (Cheetah cheetah);

Clear the batch queue.

Arguments
cheetah: handle of a Cheetah adapter

Return Value
A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details
All queued data and commands are removed from the queue.

www.totalphase.com 30

http://www.totalphase.com/

Cheetah SPI Host Adapter

Queue the Cheetah Output Enable (ch_spi_queue_oe)

int ch_spi_queue_oe (Cheetah cheetah,
u08 oe);

Enable/disable the outputs.

Arguments

cheetah: handle of a Cheetah adapter

oe: 0 to disable the outputs, and 1 to enable

Return Value

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details

This function enables and disables the outputs on the Cheetah device. When enabled, the
Cheetah device connects to the SPI bus and is ready to drive the signal lines. When the
Cheetah output enable is disabled, the device disconnects from the bus and each signal line is
held at their current values with very weak internal pull-up or pull-down on the Cheetah device.

Call this function to enable the Cheetah outputs before calling any of the other queue functions.

Queue Slave Select Signals (ch_spi_queue_ss)

int ch_spi_queue_ss (Cheetah cheetah,
u08 active);

Queue Slave Select assertion/deassertion.

Arguments

cheetah: handle of a Cheetah adapter

active: a bit mask based on the 3 SS lines where 1 corresponds to assertion and 0 to de-
assertion

Return Value

A Cheetah status code is returned with CH_OK on success.

Specific Error Codes

None.

Details

This function adds a command to the batch queue to assert/deassert the SPI slave select lines.
The active parameter is a bit mask. For example, setting active to 0x05 would mean that
SS3 and SS1 are asserted and SS2 is deasserted. The polarity of the slave select is determined
from a previous call to ch_spi_configure.

www.totalphase.com 31

http://www.totalphase.com/

Cheetah SPI Host Adapter

Queue a Byte (ch_spi_queue_byte)

int ch_spi_queue_byte (Cheetah cheetah,
int count,
u08 data_out);

Queue a byte value to be sent across the bus one or more times.

Arguments

cheetah: handle of a Cheetah adapter

count: number of bytes to put in queue

data_out: value of the byte to queue

Return Value

Returns the actual number of times the byte in data_out was added to the queue. This should
equal count.

Specific Error Codes

None.

Details

Queues count number of bytes to send and sets each byte to the value of data_out.

For this command, and the ch_spi_queue_array command, the polarity, phase, and bit or-
dering will be determined by the configuration set with the ch_spi_configure function.

Queue a Byte Array (ch_spi_queue_array)

int ch_spi_queue_array (Cheetah cheetah,
u16 num_bytes,
const u08 * data_out);

Queue an array of bytes to be sent across the bus.

Arguments

cheetah: handle of a Cheetah adapter

num_bytes: number of bytes in data_out

data_out: byte array to queue

Return Value

Returns the number of bytes queued. This should equal num_bytes.

Specific Error Codes

None.

Details

The array will be processed with a minimal run length encoding algorithm, so repeated se-
quences of single bytes will be sent more efficiently. This helps reduce outgoing (host to Chee-
tah) bandwidth on the USB bus.

For this command, and the ch_spi_queue_byte command, the polarity, phase, and bit order-
ing will be determined by the configuration set with the ch_spi_configure function.

www.totalphase.com 32

http://www.totalphase.com/

Cheetah SPI Host Adapter

Queue a Delay in Cycles (ch_spi_queue_delay_cycles)

int ch_spi_queue_delay_cycles (Cheetah cheetah,
int cycles);

Queue a delay value on the bus in units of clock cycles.

Arguments

cheetah: handle of a Cheetah adapter

cycles: cycles of delay to add to the outbound shift

Return Value

Returns the actual number of cycles of delay that were queued.

Specific Error Codes

None.

Details

Queues cycles amount of delay on the bus. These are in units of clock cycles as set with
ch_spi_bitrate. The delays can only be queued in multiples of 8. The function will return
the actual number of cycles queued. The requested number of cycles will be rounded up to the
next multiple of 8.

The requested number of cycles must be greater than zero and less than or equal to 232−9. If
the requested number of cycles is out of bounds, no delay is queued and the function will return
0.

Queue a Delay in Nanoseconds (ch_spi_queue_delay_ns)

int ch_spi_queue_delay_ns (Cheetah cheetah,
int nanoseconds);

Queue a delay value on the bus in units of nanoseconds.

Arguments

cheetah: handle of a Cheetah adapter

nanoseconds: amount of time for delay in nanoseconds

Return Value

Returns the actual number of nanoseconds of delay that were queued.

Specific Error Codes

None.

Details

Queues nanoseconds amount of delay on the bus. The fundamental unit of delay that can be
queued on the Cheetah SPI bus is 8 times the clock period. Therefore, requested delay will
be rounded up to the next even multiple of this time span. The function will return the actual
number of nanoseconds queued.

The requested number of nanoseconds must be greater than zero and less than or equal to 2
seconds. If the requested number of nanoseconds is out of bounds, no delay is queued and the
function will return 0.

www.totalphase.com 33

http://www.totalphase.com/

Cheetah SPI Host Adapter

Get Shift Length (ch_spi_batch_length)

int ch_spi_batch_length (Cheetah cheetah);

Returns the number of data bytes in the queue.

Arguments

cheetah: handle of a Cheetah adapter

Return Value

Returns the number of data bytes in the queue. This does not include the commands (SS
assertion, OE, etc). It only corresponds to the number of bytes that will be shifted out on the
SPI bus. The value returned is also the number of bytes to expect from the slave device when
the currently queued commands are executed.

Specific Error Codes

None.

Details

None.

Execute SPI Shift (ch_spi_batch_shift)

int ch_spi_batch_shift (Cheetah cheetah,
int num_bytes,
u08 * data_in);

Perform the SPI shift operations in the queue.

Arguments

cheetah: handle of a Cheetah adapter

num_bytes: number of bytes to put into data_in

data_in: buffer to place data received from slave device

Return Value

The number of bytes sent by the Cheetah device across the SPI bus.

Specific Error Codes

CH_SPI_BATCH_EMPTY_QUEUE: The queue was empty.

Details

This function performs all of the accumulated commands in the queue and shifts them in order
onto the SPI bus. After the operation completes, the batch queue is not cleared. Therefore, this
function may be called repeatedly if the same sequence of commands is to be shifted across
the bus multiple times.

As data is shifted by the Cheetah device onto the MOSI line, the slave device will shift the same
amount of data back across the MISO line. This function will put the first num_bytes number
of bytes received from the slave device into the data_in array. To ensure that all of the data
from the slave device is captured, call ch_spi_batch_length to determine how much data to
expect from the slave device. Setting num_bytes to 0 is permissible for cases where the data
from slave device is not required and can simply be discarded.

www.totalphase.com 34

http://www.totalphase.com/

Cheetah SPI Host Adapter

If the number of bytes received from the slave device is less than num_bytes, only the number
of bytes received will be put into data_in. However, all of the outgoing bytes in the queue will
still be shifted. When setting num_bytes to a value less than the total outgoing length, a special
optimization will automatically take effect. This optimization will help reduce the traffic on the
USB bus in the inbound direction (Cheetah to host). This optimization introduces an 8 clock
cycle delay in the operation of the Cheetah device at the point that the Cheetah device stops
sending the slave response back to the host.

Submit an Asynchronous SPI Shift (ch_spi_async_submit)

int ch_spi_async_submit (Cheetah cheetah);

Submit the SPI shift operations in the queue for asynchronous execution.

Arguments
cheetah: handle of a Cheetah adapter

Return Value
The number of bytes to be sent by the Cheetah device across the SPI bus.

Specific Error Codes
CH_SPI_BATCH_EMPTY_QUEUE: The queue was empty.

CH_SPI_ASYNC_MAX_REACHED: The maximum number of outstanding asynchronous batches
has been reached.

CH_SPI_ASYNC_EXCESS_DELAY: The queue has a queued delay after the last shifted byte,
which is not permissible for asynchronous batch shifting.

Details
This function will submit the current batch queue asynchronously to the Cheetah. A temporary
outgoing buffer will be created to store the batch queue. An internal incoming buffer will be
also created to asynchronously capture the slave response data. The application programmer
does not have to explicitly manage these two buffers. The function will immediately return after
queuing this batch onto the USB, rather than waiting for the shift to complete on the SPI bus.

At this point, the application can submit another batch to the queue. This can be done im-
mediately by submitting the same queue a second time without altering it — the application
simply needs to call ch_spi_async_submit again. Or, the application may clear the queue
and assemble a different batch all together (see the ch_spi_queue family of functions). Any
subsequent calls to ch_spi_async_submit will again create a temporary outgoing buffer and
copy the current batch into it. Likewise, a temporary incoming buffer will also be created.

Note that the submitted batch should be sufficiently long (in real time) so that it does not com-
plete before the application can submit more batches (and also collect the first batch). This will
allow the adjacent batches to shift with very little delay between them. How long to be safe?
First, there is always the possibility that the application’s process could be scheduled out by the
operating system before it has an opportunity to submit the subsequent batch. The operating
system scheduler timeslice may be as much as 10 ms. Therefore, submitted batches should
be long enough to bridge one, if not two, time slices. Second, if the application is performing
its own functions between the submission of two batches, the length of the batches should be
long enough to accommodate the CPU time of those functions.

Keep in mind that there can significant memory overhead for each asynchronous batch:

www.totalphase.com 35

http://www.totalphase.com/

Cheetah SPI Host Adapter

1. Up to 4 times the size of the outgoing number of bytes. In the worst case, if there are no se-
quential repeats of data, the outgoing buffer is approximately twice the size of the number
of bytes shifted out on the SPI bus (this doesn’t count SS# assert/deassert commands or
intermediate delays) and there is potentially another factor of two due to kernel/user mode
memory allocation. So if the application shifts 10 KB out in one batch, the outgoing buffer
overhead is approximately 40 KB.

2. 2 times the size of the incoming buffer for each batch.

3. Size of the data_in buffer supplied to the ch_spi_async_collect function.

Hence, it is important to not queue many megabytes of batches with the asynchronous interface.
Additionally, only a fixed number of batches can be submitted and be left pending prior to
collection. This number is fixed to 16.

Considering the time delay between the last queued command of one asynchronous batch and
the first queued command of an immediately subsequent asynchronous batch, there potentially
can be delays inserted due to a padding algorithm that takes effect at the end of any given
batch. In general, there can be a maximum delay of (2040 / spi_bitrate_hz) present on the
SPI bus between two asynchronous batches.

Finally, the asynchronous interface is only useful if the outgoing data of any asynchronous batch
does not rely on the return MISO data of a previous asynchronous batch.

Collect an Asynchronous SPI Shift (ch_spi_async_collect)

int ch_spi_async_collect (Cheetah cheetah,
int num_bytes,
u08 * data_in);

Collect a previously submitted asynchronous SPI shift queue.

Arguments
cheetah: handle of a Cheetah adapter

num_bytes: number of bytes to put into data_in

data_in: buffer to place data received from slave device

Return Value
The number of bytes sent by the Cheetah device across the SPI bus.

Specific Error Codes
CH_SPI_ASYNC_EMPTY: There are no outstanding asynchronous batches to be collected.

Details
This function can be called at anytime after submitting a batch for asynchronous processing. It
will block until the first pending batch completes. For example, if there are 5 batches outstand-
ing, this function will return after 1 batch has fully completed, leaving the other 4 batches still
outstanding.

The function will fill the user-supplied buffer with the incoming MISO data for the completed
batch. The incoming data will be copied from the internal incoming buffer originally created
by ch_spi_async_submit into the user supplied data_in buffer. The internal buffers (both
outgoing and incoming) for the completed batch will be deleted before this function returns to
the application.

www.totalphase.com 36

http://www.totalphase.com/

Cheetah SPI Host Adapter

If ch_close is called without collecting pending asynchronous batches, those batches will be
canceled, even if they are in progress. All temporary buffers will be freed as well.

A suggested mode of operation would be as follows:

1. Submit 2–4 asynchronous batches, each with about 40 ms worth of SPI shifting. A single
batch can contain many SPI commands / packets, of course.

2. Call ch_spi_async_collect to collect one batch. Signal another thread to process this
data.

3. Submit another asynchronous batch to replace the one that was just collected.

4. Repeat steps 2 & 3 while your other thread simply processes the data.

Note that this merely is a recommendation for use and developers can modify this procedure
as it suits their own application requirements.

The application must keep full accounting of how many batches have been submitted and how
many are collected during each step of the process. It is even possible that the application will
not need multiple threads if it can process the data between steps 2 and 3 and guarantee the
algorithm will not take too long to process the incoming data.

www.totalphase.com 37

http://www.totalphase.com/

Cheetah SPI Host Adapter

5.6 Error Codes

Table 7: Cheetah API Error Codes

Literal Name Value ch_status_string() return value
CH_OK 0 ok
CH_UNABLE_TO_LOAD_LIBRARY -1 unable to load library
CH_UNABLE_TO_LOAD_DRIVER -2 unable to load USB driver
CH_UNABLE_TO_LOAD_FUNCTION -3 unable to load binding function
CH_INCOMPATIBLE_LIBRARY -4 incompatible library version
CH_INCOMPATIBLE_DEVICE -5 incompatible device version
CH_INCOMPATIBLE_DRIVER -6 incompatible driver version
CH_COMMUNICATION_ERROR -7 communication error
CH_UNABLE_TO_OPEN -8 unable to open device
CH_UNABLE_TO_CLOSE -9 unable to close device
CH_INVALID_HANDLE -10 invalid device handle
CH_CONFIG_ERROR -11 configuration error
CH_UNKNOWN_PROTOCOL -12 unknown protocol
CH_STILL_ACTIVE -13 still active
CH_FUNCTION_NOT_AVAILABLE -14 function not available
CH_OS_ERROR -15 os error
CH_SPI_WRITE_ERROR -100 spi write error
CH_SPI_BATCH_EMPTY_QUEUE -101 spi batch empty queue
CH_SPI_BATCH_SHORT_BUFFER -102 spi batch short buffer
CH_SPI_ASYNC_EMPTY -103 spi async empty
CH_SPI_ASYNC_PENDING -104 spi async pending
CH_SPI_ASYNC_MAX_REACHED -105 spi async max reached
CH_SPI_ASYNC_EXCESS_DELAY -106 spi async excess trailing delay

www.totalphase.com 38

http://www.totalphase.com/

Cheetah SPI Host Adapter

6 Legal / Contact

6.1 Disclaimer

All of the software and documentation provided in this datasheet, is copyright Total Phase, Inc.
(“Total Phase”). License is granted to the user to freely use and distribute the software and
documentation in complete and unaltered form, provided that the purpose is to use or evaluate
Total Phase products. Distribution rights do not include public posting or mirroring on Internet
websites. Only a link to the Total Phase download area can be provided on such public websites.

Total Phase shall in no event be liable to any party for direct, indirect, special, general, inciden-
tal, or consequential damages arising from the use of its site, the software or documentation
downloaded from its site, or any derivative works thereof, even if Total Phase or distributors
have been advised of the possibility of such damage. The software, its documentation, and
any derivative works is provided on an “as-is” basis, and thus comes with absolutely no war-
ranty, either express or implied. This disclaimer includes, but is not limited to, implied warranties
of merchantability, fitness for any particular purpose, and non-infringement. Total Phase and
distributors have no obligation to provide maintenance, support, or updates.

Information in this document is subject to change without notice and should not be construed as
a commitment by Total Phase. While the information contained herein is believed to be accurate,
Total Phase assumes no responsibility for any errors and/or omissions that may appear in this
document.

6.2 Life Support Equipment Policy

Total Phase products are not authorized for use in life support devices or systems. Life support
devices or systems include, but are not limited to, surgical implants, medical systems, and
other safety-critical systems in which failure of a Total Phase product could cause personal
injury or loss of life. Should a Total Phase product be used in such an unauthorized manner,
Buyer agrees to indemnify and hold harmless Total Phase, its officers, employees, affiliates,
and distributors from any and all claims arising from such use, even if such claim alleges that
Total Phase was negligent in the design or manufacture of its product.

6.3 Contact Information

Total Phase can be found on the Internet at http://www.totalphase.com/. If you have support-
related questions, please email the product engineers at support@totalphase.com. For sales
inquiries, please contact sales@totalphase.com.

© 2006–2008 Total Phase, Inc.
All rights reserved.

www.totalphase.com 39

http://www.totalphase.com/
mailto:support@totalphase.com
mailto:sales@totalphase.com
http://www.totalphase.com/

Cheetah SPI Host Adapter

List of Figures

1 Sample SPI Implementation . 2
2 SPI Modes . 3
3 The Cheetah SPI Host Adapter in the upright position 4
4 The Cheetah SPI Host Adapter in the upside down position 4
5 SPI Timing Requirements . 7
6 SPI Byte-Level Timing . 7

List of Tables

1 SPI Timing Parameters . 7
2 power_mask enumerated types . 25
3 Host interface speed enumerated types . 26
4 polarity enumerated types . 29
5 phase enumerated types . 30
6 bitorder enumerated types . 30
7 Cheetah API Error Codes . 38

Contents

1 General Overview 2
1.1 SPI Background . 2

SPI History . 2
SPI Theory of Operation . 2
SPI Modes . 3
SPI Benefits and Drawbacks . 3
SPI References . 3

2 Hardware Specifications 4
2.1 Connector Specification . 4

Orientation . 4
Order of Leads . 4
Ground . 5
SPI Pins . 5
Powering Downstream Devices . 5

2.2 Signal Specifications / Power Consumption . 6
Logic High Levels . 6
ESD protection . 6
Power Consumption . 6

2.3 USB 2.0 . 6
2.4 Temperature Specifications . 6
2.5 SPI Signaling Characteristics . 7

SPI Waveforms . 7
Speeds . 8
Pin Driving . 8

www.totalphase.com 40

http://www.totalphase.com/

Cheetah SPI Host Adapter

3 Software 9
3.1 Compatibility . 9

Overview . 9
Windows Compatibility . 9
Linux Compatibility . 9
Mac OS X Compatibility . 9

3.2 Windows USB Driver . 9
Driver Installation . 9
Driver Removal . 10

3.3 Linux USB Driver . 11
UDEV . 11
USB Hotplug . 11
World-Writable USB Filesystem . 11

3.4 Mac OS X USB Driver . 12
3.5 USB Port Assignment . 12

Detecting Ports . 12
3.6 Cheetah Dynamically Linked Library . 12

DLL Philosophy . 12
DLL Location . 13
DLL Versioning . 14

3.7 Rosetta Language Bindings: API Integration into Custom Applications 14
Overview . 14
Versioning . 15
Customizations . 15

3.8 Application Notes . 15
Threading . 15
USB Scheduling Delays . 16

4 Firmware 17
4.1 Philosophy . 17
4.2 Procedure . 17

5 API Documentation 18
5.1 Introduction . 18
5.2 General Data Types . 18
5.3 Notes on Status Codes . 18
5.4 General . 20

Interface . 20
Find Devices (cheetah_find_devices) 20
Find Devices (ch_find_devices_ext) . 20
Open a Cheetah device (ch_open) . 21
Open a Cheetah device (ch_open_ext) 21
Close a Cheetah (ch_close) . 23

www.totalphase.com 41

http://www.totalphase.com/

Cheetah SPI Host Adapter

Get Port (ch_port) . 23
Get Unique ID (ch_unique_id) . 24
Status String (ch_status_string) . 24
Version (ch_version) . 24
Sleep (ch_sleep_ms) . 25
Target Power (ch_target_power) . 25
Host Interface Speed (ch_host_ifce_speed) 26

5.5 SPI Interface . 27
SPI Overview . 27
SPI Functions . 29

Set Bitrate (ch_spi_bitrate) . 29
Configure SPI Bus Parameters (ch_spi_configure) 29
Clear Batch Queue (ch_spi_queue_clear) 30
Queue the Cheetah Output Enable (ch_spi_queue_oe) 31
Queue Slave Select Signals (ch_spi_queue_ss) 31
Queue a Byte (ch_spi_queue_byte) . 32
Queue a Byte Array (ch_spi_queue_array) 32
Queue a Delay in Cycles (ch_spi_queue_delay_cycles) 33
Queue a Delay in Nanoseconds (ch_spi_queue_delay_ns) 33
Get Shift Length (ch_spi_batch_length) 34
Execute SPI Shift (ch_spi_batch_shift) 34
Submit an Asynchronous SPI Shift (ch_spi_async_submit) 35
Collect an Asynchronous SPI Shift (ch_spi_async_collect) 36

5.6 Error Codes . 38

6 Legal / Contact 39
6.1 Disclaimer . 39
6.2 Life Support Equipment Policy . 39
6.3 Contact Information . 39

www.totalphase.com 42

http://www.totalphase.com/

	1 General Overview
	1.1 SPI Background
	SPI History
	SPI Theory of Operation
	SPI Modes
	SPI Benefits and Drawbacks
	SPI References

	2 Hardware Specifications
	2.1 Connector Specification
	Orientation
	Order of Leads
	Ground
	SPI Pins
	Powering Downstream Devices

	2.2 Signal Specifications / Power Consumption
	Logic High Levels
	ESD protection
	Power Consumption

	2.3 USB 2.0
	2.4 Temperature Specifications
	2.5 SPI Signaling Characteristics
	SPI Waveforms
	Speeds
	Pin Driving

	3 Software
	3.1 Compatibility
	Overview
	Windows Compatibility
	Linux Compatibility
	Mac OS X Compatibility

	3.2 Windows USB Driver
	Driver Installation
	Driver Removal

	3.3 Linux USB Driver
	UDEV
	USB Hotplug
	World-Writable USB Filesystem

	3.4 Mac OS X USB Driver
	3.5 USB Port Assignment
	Detecting Ports

	3.6 Cheetah Dynamically Linked Library
	DLL Philosophy
	DLL Location
	DLL Versioning

	3.7 Rosetta Language Bindings: API Integration into Custom Applications
	Overview
	Versioning
	Customizations

	3.8 Application Notes
	Threading
	USB Scheduling Delays

	4 Firmware
	4.1 Philosophy
	4.2 Procedure

	5 API Documentation
	5.1 Introduction
	5.2 General Data Types
	5.3 Notes on Status Codes
	5.4 General
	Interface
	Find Devices (cheetah_find_devices)
	Find Devices (ch_find_devices_ext)
	Open a Cheetah device (ch_open)
	Open a Cheetah device (ch_open_ext)
	Close a Cheetah (ch_close)
	Get Port (ch_port)
	Get Unique ID (ch_unique_id)
	Status String (ch_status_string)
	Version (ch_version)
	Sleep (ch_sleep_ms)
	Target Power (ch_target_power)
	Host Interface Speed (ch_host_ifce_speed)

	5.5 SPI Interface
	SPI Overview
	SPI Functions
	Set Bitrate (ch_spi_bitrate)
	Configure SPI Bus Parameters (ch_spi_configure)
	Clear Batch Queue (ch_spi_queue_clear)
	Queue the Cheetah Output Enable (ch_spi_queue_oe)
	Queue Slave Select Signals (ch_spi_queue_ss)
	Queue a Byte (ch_spi_queue_byte)
	Queue a Byte Array (ch_spi_queue_array)
	Queue a Delay in Cycles (ch_spi_queue_delay_cycles)
	Queue a Delay in Nanoseconds (ch_spi_queue_delay_ns)
	Get Shift Length (ch_spi_batch_length)
	Execute SPI Shift (ch_spi_batch_shift)
	Submit an Asynchronous SPI Shift (ch_spi_async_submit)
	Collect an Asynchronous SPI Shift (ch_spi_async_collect)

	5.6 Error Codes

	6 Legal / Contact
	6.1 Disclaimer
	6.2 Life Support Equipment Policy
	6.3 Contact Information

